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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 

Problem Point Value Your score Topic 

1 27  System Properties 

2 29  FIR Filter Analysis 

3 24  System Identification 

4 20  Filter Design 

Total 100   

 

 

  



Problem 2.1.  System Properties.  27 points.  

Each discrete-time system has input x[n] and output y[n], and x[n] and y[n] might be complex-valued. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input 

bounded-output (BIBO) stable or unstable. 

You must either prove that the system property holds in the case of linearity, time-invariance, or stability, 

or provide a counter-example that the property does not hold.  Providing an answer without any 

justification will earn 0 points. 

Part System Name System Formula Linear? Time-

Invariant? 

BIBO 

Stable? 

(a) Add a 

DC Offset  
𝑦[𝑛] = 𝑥[𝑛] + 1 for − ∞ < 𝑛 < ∞   

No 

 

Yes 

 

Yes 

(b)  

Reciprocal 
𝑦[𝑛] =

1

𝑥[𝑛]
 for −∞ < 𝑛 < ∞  

 

No 

 

Yes 

 

No 

(c) Scaling of 

the time axis 

𝑦[𝑛] = 𝑥[2 𝑛] for − ∞ < 𝑛 < ∞   

Yes 

 

No 

 

Yes 

Linearity. We’ll first apply the all-zero input test. If the output is not zero for all time, then the 

system is not linear.  Otherwise, we’ll have to apply the definitions for homogeneity and additivity.  

All-zero input test is a special case of homogeneity 𝒂 𝒙[𝒏] → 𝒂 𝒚[𝒏] when the constant 𝒂 = 𝟎. 

BIBO Stability.  Bounded input | 𝒙[𝒏] | ≤ 𝑩 < ∞ would give bounded output | 𝒚[𝒏] | ≤ 𝑪 < ∞. 

(a) Add a DC offset to the input signal:  𝑦[𝑛] = 𝑥[𝑛] + 1 for − ∞ < 𝑛 < ∞.  9 points. 

Linearity:  Does not pass all-zero input test.  When 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 − ∞ < 𝑛 < ∞, 𝒚[𝒏] = 𝟏.  NO. 

Time-Invariance: Pointwise operation; current output value 𝒚[𝒏] depends only on current input 

𝒙[𝒏] and not on any other input/output values.  All pointwise operations are time-invariant.  YES. 

BIBO Stability.  | 𝒚[𝒏] | = | 𝒙[𝒏] + 𝟏 | ≤ | 𝒙[𝒏]| + 𝟏 = 𝑩 + 𝟏 <  ∞.  YES. 

(b) Reciprocal: 𝑦[𝑛] =
1

𝑥[𝑛]
 for −∞ < 𝑛 < ∞ 

Linearity:  Does not pass the all-zero input test.  When 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 − ∞ < 𝑛 < ∞, 𝒚[𝒏] =
𝟏

𝟎
 .  If 

we take the limit as 𝒙[𝒏] → 𝟎, then 𝒚[𝒏] → ∞.  NO. 

Time-Invariance: Pointwise operation; current output value 𝒚[𝒏] depends only on current input 

𝒙[𝒏] and not on any other input/output values.  All pointwise operations are time-invariant.  YES. 

BIBO Stability.  When 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 −∞ < 𝑛 < ∞, 𝒚[𝒏] → ∞ in the limit.  No bounded.  NO. 

(c) Scaling of the time axis: 𝑦[𝑛] = 𝑥[2 𝑛] for −∞ < 𝑛 < ∞   9 points. 

Linearity: Passes the all-zero input test. 

• Homogeneity: 𝒚𝒔𝒄𝒂𝒍𝒆𝒅[𝒏] = (𝒂 𝒙[𝒏])𝒏→𝟐𝒏 = 𝒂 𝒙[𝟐𝒏] = 𝒂 𝒚[𝒏].  YES. 

• Additivity: 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) = (𝒙𝟏[𝒏] + 𝒙𝟐[𝒏])𝒏→𝟐𝒏 = 𝒙𝟏[𝟐𝒏] + 𝒙𝟐[𝟐𝒏] = 𝒚𝟏[𝒏] + 𝒚𝟐[𝒏]. YES. 

Time-Invariance:  𝒚[𝒏] = 𝒙[𝟐𝒏] selects every even-indexed value of 𝒙[𝒏]: { … , 𝒙[−𝟐], 𝒙[𝟎], 𝒙[𝟐],… . }. 

Input 𝒙[𝒏 − 𝟏].  Output 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅[𝒏] will be { … , 𝒙[−𝟑], 𝒙[−𝟏], 𝒙[𝟏],… . }.  This is not 𝒚[𝒏 − 𝟏].  NO. 

BIBO Stability.  | 𝒚[𝒏] | = | 𝒙[𝟐 𝒏] | ≤ 𝑩 <  ∞.  YES.  

System in (c) is called downsampling by 2 because it keeps every other value of the input signal.  This 

operation is used to reduce the sampling rate of 𝒙[𝒏] by a factor of 2.  It’s a building block in 

convolutional neural networks, communication receivers and many other systems. 

 

SPFirst Sec. 5-4, 5-5, 8-2 & 8-4.2 

 
Lecture Slides 8-3 to 8-8 and 11-12 to 11-13  

 
HW 5.2 

 
Midterm #2 Problems: 2.5 in F18, 2.1 in F21 & 2.1 in F23 

Handout H on BIBO Stability 

 



Problem 2.2 FIR Filter Analysis.  29 points.  

Consider a causal linear time-invariant (LTI) discrete-time finite impulse response (FIR) 

filter with input x[n] and output y[n] observed for n  0 governed by 

𝑦[𝑛] = 𝑥[𝑛] +  𝑏 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]  for 𝑛 ≥ 0 

where 𝑏 = −2 cos(𝜔̂0) and 𝜔̂0 is a constant that is discrete-time frequency in units of rad/sample. 

(a) What are the initial condition(s) and their value(s)?  Why?  5 points. 

We can see the initial conditions by starting to compute the first few values of 𝒚[𝒏]. 

𝒚[𝟎] =  𝒙[𝟎] +  𝒃 𝒙[−𝟏] + 𝒙[−𝟐]   

𝒚[𝟏] =  𝒙[𝟏] +  𝒃 𝒙[𝟎] + 𝒙[−𝟏]   

𝒚[𝟐] =  𝒙[𝟐] +  𝒃 𝒙[𝟏] + 𝒙[𝟎]   

The initial conditions need to be zero to satisfy the necessary (but not sufficient) conditions 

for linearity and time-invariance properties to hold. 

𝒙[−𝟏] = 𝒙[−𝟐] = 𝟎 

(b) Derive a formula for the transfer function in the z-domain including the region of convergence. 

6 points. 

Take the z-transform of both sides of difference equation with initial conditions being zero: 

𝒀(𝒛) = 𝑿(𝒛) + 𝒃 𝒛−𝟏 𝑿(𝒛) + 𝒛−𝟐 𝑿(𝒛) 

Divide both sides by 𝑿(𝒛) to obtain the system transfer function 𝑯(𝒛) in the z-domain: 

𝒀(𝒛)

𝑿(𝒛)
= 𝟏 + 𝒃 𝒛−𝟏 + 𝒛−𝟐  

 The region of convergence has to exclude divisions by zero:  𝒛 ≠ 𝟎 

(c) Derive a formula for the discrete-time frequency response of the filter.  Justify your approach. 

6 points. 

Since the transfer function 𝑯(𝒛) includes the unit circle in the region of convergence, we can 

substitute 𝒛 = 𝒆𝒋 𝝎̂ to convert the transfer function into a frequency response: 

𝑯(𝒆𝒋 𝝎̂) =  𝟏 + 𝒃 𝒆−𝒋 𝝎̂ + 𝒆−𝟐 𝒋 𝝎̂ 

(d) Which best describes the filter’s magnitude response and why?  Lowpass, highpass, bandpass, 

bandstop, notch/nulling, or allpass.  6 points. 

Answer #1:  The system transfer function 𝑯(𝒛) in the z-domain has two zeros.  Using the 

quadratic formula, the zeros are at locations 

−𝒃 ± √𝒃𝟐 − 𝟒

𝟐
 

After substituting 𝒃 = −𝟐 𝐜𝐨𝐬(𝝎̂𝟎), 

𝟐 𝐜𝐨𝐬(𝝎̂𝟎)  ±  √𝟒 𝐜𝐨𝐬𝟐(𝝎̂𝟎) − 𝟒

𝟐
=
𝟐 𝐜𝐨𝐬(𝝎̂𝟎)  ±  𝟐√ 𝐜𝐨𝐬𝟐(𝝎̂𝟎) − 𝟏

𝟐
= 𝐜𝐨𝐬(𝝎̂𝟎)  ±  √−𝐬𝐢𝐧𝟐(𝝎̂𝟎) 

which is 𝐜𝐨𝐬(𝝎̂𝟎)  ±  𝒋 𝐬𝐢𝐧(𝝎̂𝟎).  This is a nulling filter that removes frequencies at ±𝝎̂𝟎 . 

Answer #2: This is the nulling filter from mini-project #2 which removes frequencies at ±𝝎̂𝟎 . 

 

This is the nulling filter 

from mini-project #2 

SPFirst Sec. 6-1 to 6-6 & 8-2 to 8-6 
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(e) Give all possible conditions on the constant 𝑏 so that the FIR filter has constant group delay (i.e. 

linear phase).  Compute the constant group delay.  6 points. 

Answer #1:  The group delay is the negative of the derivative with respect to frequency of the 

phase of the discrete-time frequency response. 

Let’s factor the frequency response into an amplitude and phase: 

𝑯(𝒆𝒋 𝝎̂) =  𝟏 + 𝒃 𝒆−𝒋 𝝎̂ + 𝒆−𝟐 𝒋 𝝎̂ = 𝒆−𝒋 𝝎̂ (𝒆𝒋 𝝎̂ + 𝒃 + 𝒆−𝒋 𝝎̂) = 𝒆−𝒋 𝝎̂ (𝒃 + 𝐜𝐨𝐬(𝝎̂)) 

𝑯(𝒆𝒋 𝝎̂) =  (𝒃 + 𝟐 𝐜𝐨𝐬(𝝎̂))⏟          
𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆 𝒕𝒆𝒓𝒎

 𝒆−𝒋 𝝎̂⏟
𝒑𝒉𝒂𝒔𝒆 𝒕𝒆𝒓𝒎

  

The phase ∠𝑯(𝒆𝒋 𝝎̂) = −𝝎̂ and 

𝐆𝐫𝐨𝐮𝐩 𝐃𝐞𝐥𝐚𝐲(𝝎̂) = −
𝒅

𝒅𝝎̂
 ∠𝑯(𝒆𝒋 𝝎̂) = 𝟏 

This is true for all values of 𝒃. 

The amplitude term can be negative, zero, and positive.  We can take the absolute value of 

the amplitude term to find the magnitude response.  For the range of frequency values for 

which the amplitude function is negative, the magnitude is computed by multiplying the 

amplitude function by -1.  This corresponds to a phase shift of 𝝅 because −𝟏 = 𝒆𝒋 𝝅.  This 

does not affect the calculation of the group delay since the derivative of a constant is zero. 

Answer #2:  The impulse response is 𝒉[𝒏] = 𝜹[𝒏] +  𝒃 𝜹[𝒏 − 𝟏] + 𝜹[𝒏 − 𝟐] which is even 

symmetric about its midpoint at index 𝒏 = 𝟏.  The constant group delay is 1 sample.  This is 

true for all values of 𝒃. 

  



Problem 2.3 System Identification.  24 points.  

You are given several causal discrete-time linear time-

invariant (LTI) systems each with unknown impulse 

response ℎ[𝑛] but you are able to observe the input signal 

𝑥[𝑛] and output signal 𝑦[𝑛] for −∞ < 𝑛 < ∞ . 

For reference, the unit step function 𝑢[𝑛] is defined as 

𝑢[𝑛] = [
1 for 𝑛 ≥ 0
0 otherwise

 

 

(a) When the input is 𝑥[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1], the output is 

𝑦[𝑛] =  𝛿[𝑛] − 𝛿[𝑛 − 1] − 𝛿[𝑛 − 2] +  𝛿[𝑛 − 3] 

i. Find the finite impulse response ℎ[𝑛].  6 points. 

Answer #1:  We can solve for 𝑯(𝒛) and then take the inverse z-transform. 

In the z-domain, 𝒀(𝒛) = 𝑯(𝒛) 𝑿(𝒛); 𝒊. 𝒆. 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=
𝟏 − 𝒛−𝟏 − 𝒛−𝟐 + 𝒛−𝟑

𝟏 − 𝒛−𝟏
 

We can use the Matlab command roots( [1 -1 -1 1] ) to find that the numerator 

polynomial has roots {−𝟏, 𝟏, 𝟏}:  

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=
(𝟏 − 𝒛−𝟏)(𝟏 − 𝒛−𝟏)(𝟏 + 𝒛−𝟏)

𝟏 − 𝒛−𝟏
= (𝟏 − 𝒛−𝟏)(𝟏 + 𝒛−𝟏) = 𝟏 − 𝒛−𝟐 

(Or we could use polynomial long division of 𝟏 − 𝒛−𝟏 into 𝟏 − 𝒛−𝟏 − 𝒛−𝟐 + 𝒛−𝟑.) 

Taking the inverse z-transform of 𝑯(𝒛) gives 𝒉[𝒏] =  𝜹[𝒏] − 𝜹[𝒏 − 𝟐]. 
 

Answer #2: The convolution of two causal signals gives a causal result.  Since 𝒙[𝒏] and 

𝒚[𝒏] are causal, 𝒉[𝒏] must be causal, i.e. 𝒉[𝒏] = 𝟎 𝐟𝐨𝐫 𝒏 < 𝟎.  Furthermore, when 

convolving two finite length signals, the result is the sum of the lengths minus 1.  Since 

𝒙[𝒏] has 2 samples and 𝒚[𝒏] has 4 samples, 𝒉[𝒏] has 3 samples: 

𝒚[𝒏] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + 𝒉[𝟐] 𝒙[𝒏 − 𝟐] 

We can use a deconvolution approach: 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝟎] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟎] =
𝒚[𝟎]

𝒙[𝟎]
=
𝟏

𝟏
= 𝟏 

𝒚[𝟏] = 𝒉[𝟎] 𝒙[𝟏] + 𝒉[𝟏] 𝒙[𝟎] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟏] =  
𝒚[𝟏] − 𝒉[𝟎] 𝒙[𝟏]

𝒙[𝟎]
=
−𝟏 + 𝟏

𝟏
= 𝟎 

𝒚[𝟐] = 𝒉[𝟎] 𝒙[𝟐] + 𝒉[𝟏] 𝒙[𝟏] + 𝒉[𝟐] 𝒙[𝟐] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟐] = −𝟏 

ii. Verify your answer by convolving ℎ[𝑛] and 𝑥[𝑛].  6 points. 

Answer #1:  We can compute the convolution in the z-domain using  

𝒀(𝒛) = 𝑯(𝒛) 𝑿(𝒛) = (𝟏 − 𝒛−𝟏)(𝟏 − 𝒛−𝟐) = 𝟏 − 𝒛−𝟏 − 𝒛−𝟐 + 𝒛−𝟑 

Answer #2:  We can compute the convolution in the time domain: 𝒚[𝒏] = 𝒉[𝒏] ∗ 𝒙[𝒏]. 
Using Matlab, conv( [1 -1], [1 0 -1] ) gives [1 -1 -1 1]. 

𝑦[𝑛] 𝑌(𝑧) Region of 

Convergence 

𝛿[𝑛] 1 all 𝑧  

𝛿[𝑛 − 𝑛0] 𝑧−𝑛0 𝑧 ≠ 0 

𝑢[𝑛] 1

1 − 𝑧−1
 

|𝑧| > 1 

(𝑛 + 1) 𝑢[𝑛] 
(

1

1 − 𝑧−1
)
2

 
|𝑧| > 1 

𝑎𝑛 𝑢[𝑛] 1

1 − 𝑎 𝑧−1
 

|𝑧| > |𝑎| 

 

HW 4.3, 5.3 & 6.1 
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(b) When the input is 𝑥[𝑛] = 𝑢[𝑛], the output is 𝑦[𝑛] = (𝑛 + 1) 𝑢[𝑛]. 
 

i. Find the infinite impulse response ℎ[𝑛]. 6 points. 

Answer #1:  We can solve for 𝑯(𝒛) and then take the inverse z-transform. 

In the z-domain, 𝒀(𝒛) = 𝑯(𝒛) 𝑿(𝒛); 𝒊. 𝒆. 

𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
=
(

𝟏
𝟏 − 𝒛−𝟏

)
𝟐

𝟏
𝟏 − 𝒛−𝟏

=
𝟏

𝟏 − 𝒛−𝟏
 

Taking the inverse z-transform gives 𝒉[𝒏] = 𝒖[𝒏]. 

Answer #2:  The convolution of two causal signals gives a causal result.  Since 𝒙[𝒏] 
and 𝒚[𝒏] are causal, 𝒉[𝒏] must be causal, i.e. 𝒉[𝒏] = 𝟎 𝐟𝐨𝐫 𝒏 < 𝟎.  Since 𝒙[𝒏] and 

𝒚[𝒏] are infinite in length, 𝒉[𝒏] could be finite or infinite in length: 

𝒚[𝒏] = 𝒉[𝟎] 𝒙[𝒏] + 𝒉[𝟏] 𝒙[𝒏 − 𝟏] + 𝒉[𝟐] 𝒙[𝒏− 𝟐] + ⋯ 

We can use a deconvolution approach: 

𝒚[𝟎] = 𝒉[𝟎] 𝒙[𝟎] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟎] =
𝒚[𝟎]

𝒙[𝟎]
=
𝟏

𝟏
= 𝟏 

𝒚[𝟏] = 𝒉[𝟎] 𝒙[𝟏] + 𝒉[𝟏] 𝒙[𝟎] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟏] =  
𝒚[𝟏] − 𝒉[𝟎] 𝒙[𝟏]

𝒙[𝟎]
=
𝟐 − 𝟏

𝟏
= 𝟏 

𝒚[𝟐] = 𝒉[𝟎] 𝒙[𝟐] + 𝒉[𝟏] 𝒙[𝟏] + 𝒉[𝟐] 𝒙[𝟐] 𝐰𝐡𝐢𝐜𝐡 𝐦𝐞𝐚𝐧𝐬 𝒉[𝟐] = 𝟏 

We could infer that 𝒉[𝒏] = 𝒖[𝒏]. 
 

ii. Verify your answer by convolving ℎ[𝑛] and 𝑥[𝑛].  6 points. 

Answer #1:  We can compute the convolution in the z-domain using 

𝒀(𝒛) = 𝑯(𝒛) 𝑿(𝒛) = (
𝟏

𝟏 − 𝒛−𝟏
) (

𝟏

𝟏 − 𝒛−𝟏
) = (

𝟏

𝟏 − 𝒛−𝟏
)
𝟐

 

The inverse z-transform of  𝒀(𝒛) is 𝒚[𝒏] = (𝒏 + 𝟏) 𝒖[𝒏]. 

Answer #2:  We can compute the convolution in the discrete-time domain: 

𝒚[𝒏] = 𝒉[𝒏] ∗ 𝒙[𝒏] = ∑ 𝒉[𝒎] 𝒙[𝒏 −𝒎] =

∞

𝒎=−∞

∑ 𝒖[𝒎] 𝒖[𝒏 −𝒎]

∞

𝒎=−∞

 

Note that 𝒖[𝒎] = 𝟎 𝐟𝐨𝐫 𝒎 < 𝟎.  Hence, the lower limit can be replaced by 0. 

Note that 𝒖[𝒏 −𝒎] = 𝟎 𝐟𝐨𝐫 𝒏 −𝒎 < 𝟎 𝒐𝒓 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒎 < 𝒏.  Hence, the upper 

limit can be replaced by 𝒏 when 𝒏 ≥ 𝟎 

𝒚[𝒏] = ∑ 𝒖[𝒎] 𝒖[𝒏 −𝒎]

∞

𝒎=−∞

= ∑ 𝟏 = (𝒏 + 𝟏)    𝐢𝐟 𝒏 > 𝟎

𝒏

𝒎=𝟎

 

In other words, 𝒚[𝒏] = (𝒏 + 𝟏) 𝒖[𝒏]. 
 



Problem 2.4. Filter Design.  20 points.  

Consider designing discrete-time linear time-invariant (LTI) infinite impulse response (IIR) filters. 

A second-order LTI IIR filter has zeros z0 and z1 and poles p0 and p1, and its transfer function in the z-

domain (where 𝐶 is a constant) is 

𝐻(𝑧) = 𝐶
(𝑧 − 𝑧0)(𝑧 − 𝑧1)

(𝑧 − 𝑝0)(𝑧 − 𝑝1)
 

In this problem, the poles and zeros will be complex-valued but not real-valued.  The imaginary 

part of the complex number cannot be zero, and the real part of the complex number can be anything. 

Give numeric values for zeros z0 and z1 and poles p0 and p1 to give each magnitude response below, 

place the zeros and poles on the pole-zero diagram, and explain your reasoning.  Please use O to 

indicate zero locations and X to indicate pole locations.  For each part, each zero and each pole 

must have a unique value.  No two can have the same value. 

 

  

Re(z) 

Im(z) 
(a) Lowpass filter 

Re(z) 

Im(z) 
(b) Highpass filter 

Re(z) 

Im(z) 
(c) Allpass filter 

Re(z) 

Im(z) 
(d) Notch filter 

HW 5.4, 6.1, 7.1, 7.2 & 7.3 

 

SPFirst Sec. 8-4, 8-5, 8-6, 8-9 & 8-10 

Lecture Slides 10-9 to 10-11 and 11-5 to 11-11 

Midterm #2: 2.3 & 2.4 on F17; 2.3 on F18; 2.3 on F21; and 2.4 on F23 

SPFirst Ch. 6 & 7 Tuneup #7 

 



 

Per lecture slide 11-7, 

• Angle of pole near unit circle indicates frequency 

at which peak occurs in magnitude response 

• Angle of zero on or near unit circle indicates 

frequency at which valley occurs in mag. response. 

Although not explicitly requested, we will choose poles 

that are conjugate symmetric to give real-valued  

feedback coefficients, and zeros that are conjugate  

symmetric to give real-valued feedforward coefficients,  

as we’ve been doing throughout the semester.  

Another reason for poles and zeros to be conjugate 

symmetric is the following.  Consider an input signal 

that is a cosine at fixed frequency 𝝎̂𝟎:   

𝒙[𝒏] = 𝐜𝐨𝐬(𝝎̂𝟎 𝒏) =
𝟏

𝟐
𝒆−𝒋 𝝎̂𝟎 𝒏 +

𝟏

𝟐
𝒆𝒋 𝝎̂𝟎 𝒏 

which has conjugate symmetric complex sinusoids at 

frequencies −𝝎̂𝟎 and +𝝎̂𝟎. 

 

For lowpass and highpass filters, we’ll place each pole at the center of each passband as per 

lecture slide 11-10 and DSP First Three-Domain Connections demo in lecture slide 11-11. 

(a) Lowpass: zeros at 

𝒛𝟎 = 𝒆
𝒋𝜽𝟏   and 

𝒛𝟏 = 𝒆
−𝒋𝜽𝟏  

with 𝜽𝟏 =
𝟏𝟓

𝟏𝟔
𝝅 and 

poles at 

𝒑𝟎 = 𝟎.𝟗 𝒆
𝒋𝜽𝟐  and 

𝒑𝟏 = 𝟎.𝟗 𝒆
−𝒋𝜽𝟐  

with 𝜽𝟐 =
𝟏

𝟏𝟔
𝝅  

 

(b) Highpass: zeros at 

𝒛𝟎 = 𝒆
𝒋𝜽𝟐   and 

𝒛𝟏 = 𝒆
−𝒋𝜽𝟐  

with 𝜽𝟐 =
𝟏

𝟏𝟔
𝝅 and 

poles at 

𝒑𝟎 = 𝟎.𝟗 𝒆
𝒋𝜽𝟏  and 

𝒑𝟏 = 𝟎.𝟗 𝒆
−𝒋𝜽𝟏  

with 𝜽𝟏 =
𝟏𝟓

𝟏𝟔
𝝅  

  

%%% Lowpass filter example 

zeroAngle = 15*pi/16; 

z0 = exp(j*zeroAngle); 

z1 = exp(-j*zeroAngle); 

numer = [1 -(z0+z1) z0*z1]; 

  

r = 0.9; 

poleAngle = pi/16; 

p0 = r * exp(j*poleAngle); 

p1 = r * exp(-j*poleAngle); 

denom = [1 -(p0+p1) p0*p1]; 

  

%%% Normalize frequency response 

%%% to 1 at center of passband 

z = 1; zvec = [1 z^(-1) z^(-2)]'; 

C = (denom * zvec) / (numer * zvec); 

 

figure; zplane(C*numer, denom); 

figure; freqz(C*numer, denom); 

  

 
 

Lecture slide 11-10 

https://users.ece.utexas.edu/~bevans/courses/signals/lectures/11_IIR_Filters/lecture11.pptx
https://users.ece.utexas.edu/~bevans/courses/signals/lectures/11_IIR_Filters/lecture11.pptx
https://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
https://users.ece.utexas.edu/~bevans/courses/signals/lectures/11_IIR_Filters/lecture11.pptx


For allpass filters, we’ll follow all-pass filter handout to place pole-zero pairs at the same 

angle and reciprocal magnitudes.  

(c) Allpass: zeros at 

𝒛𝟎 = 𝟏.𝟐𝟓 𝒆
𝒋𝜽𝟒  and 

𝒛𝟏 = 𝟏.𝟐𝟓 𝒆
−𝒋𝜽𝟒  

with 𝜽𝟒 =
𝝅

𝟒
 

poles at 

𝒑𝟎 = 𝟎.𝟖 𝒆
𝒋𝜽𝟒  and 

𝒑𝟏 = 𝟎.𝟖 𝒆
−𝒋𝜽𝟒 

 

 

For notch filters, we’ll follow the nulling filter analysis from mini-project #2 to place the 

zeros on the unit circle.  We’ll generalize the pole placements based on the first-order DC 

notch filter at the 0:04 mark in the DSP First Three-Domain Connections demo “IIR filter 

with one pole and one zero.”. 

(d) Notch: zeros at 

𝒛𝟎 = 𝒆
𝒋𝜽𝟒   and 

𝒛𝟏 = 𝒆
−𝒋𝜽𝟒  

with 𝜽𝟒 =
𝝅

𝟒
 

poles at 

𝒑𝟎 = 𝟎. 𝟖 𝒆
𝒋𝜽𝟒  and 

𝒑𝟏 = 𝟎. 𝟖 𝒆
−𝒋𝜽𝟒 

 

 

 

  

  

Selectivity Example Application(s) Selectivity Example Application 

Lowpass Anti-aliasing filter before sampler 

in ADC; demodulation 

Bandstop  

Highpass Enhance edges/texture in images Allpass Phase correction 

Bandpass Modulation Notch Remove a specific unwanted 

frequency as in mini-project #2 

 

https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20I%20All%20Pass%20Filters.pdf
https://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html

